ArcGIS Living Atlas ile Kullanıma Hazır Derin Öğrenme Modelleri

Çok çeşitli sensörlerden ve kaynaklardan elde edilen görüntü verileri gün geçtikçe artmaya devam ediyor, bunları anlamlandırmak, sınıflandırmak, analiz etmek ya da bütün bu işlemleri otomatize etmek için Yapay Zeka’ya olan ihtiyaç ve talep de aynı hızda artıyor. Kuruluşunuzun da büyük boyutlarda ve hızlarda veri işlemeye hazır olabilmesi için Esri, yapay zeka işleriniz için ArcGIS Living Atlas of The World ile kullanımınıza hazır yapay zeka modellerini kullanıma sürdü. Bunlara bu bağlantıdan ulaşabilirsiniz.

Coğrafi veri kümelerinize uygulayabileceğiniz yapay zeka yeteneklerden daha önceden bahsettiğimiz, ArcGIS’te bulunan bir çok derin öğrenme modeli hakkındaki bilgilere buradan ulaşabilirsiniz.

Esri’nin Yapay Zeka ekibi buradaki modellerine sürekli olarak yenilerini eklemeye devam ediyor.

Yeni Derin Öğrenme Modelleri kullanılarak otomatik olarak çıkarılmış bina taban sınırları.

 

Yeni çıkan Kullanıma hazır modellerle ise siz ve kurumlarınızın derin öğrenme iş akışlarınızı çok daha kolay ve ölçeklendirilebilir hale getiriyor. Bu kullanıma hazır modeller yani eğitime gerek duymayan modeller, Esri tarafından çok büyük veri kümelerinden önceden eğitilmiştir ve nokta bulutu verilerinizden ya da uydu görüntülerinden sayısallaştırma yoluyla çıkaracağınız detayları otomatikleştirme için kolayca kullanılabilirler. Dahası yapay zeka ve derin öğrenmenin gücüne erişebilmek için ArcGIS Online hesabınız olması yeterlidir.

Modelleri Kullanma

Bu modelleri kullanmak oldukça kolaydır. ArcGIS Pro’daki coğrafi işlem araçlarını kullanarak verilerinize uygulayabilirsiniz. Örneğin Detect Objects Using Deep Learning aracı için araca girdi olarak görüntüleri ve yukarıdaki bağlantıdan indirdiğiniz modeli göstermeniz yeterli. Derin öğrenme işlemleri daha önce hiç olmadığı kadar kolay bir hal aldı. Tabi iyi bir grafik işlemci biriminizin olması işleri hızlandırmak için iyi olabilir ama gerekli değildir, modelinizi CPU ile de çalıştırabilirsiniz. Ya da işleri daha hızlı bir hale getirmek için ArcGIS Enterprise ile Image Server kullanabilirsiniz.

Bina taban sınırlarını çıkartma işleminin yapıldığı örnek video’yu buradan izleyebilirsiniz.

Bu derin öğrenme modellerinden nasıl yararlanabilirsiniz?

Muhtemelen, ayak izlerini sayısallaştırmak veya arazi örtüsü haritaları oluşturmak gibi görüntülerden detayları manuel olarak çıkarmanın zaman alıcı olduğunu söylemeye gerek yoktur. Derin öğrenme, bu süreci otomatikleştirir ve bu çıktıları elde etmek için gereken manuel etkileşimi önemli ölçüde aza indirir. Bununla birlikte, kendi derin öğrenme modelinizi eğitmek karmaşık olabilir, çok fazla veriye, kapsamlı bilgi işleme kaynağına ve derin öğrenmenin nasıl çalıştığına dair bilgiye ihtiyaç duyar.

Kaliforniya’dan örnek bina taban sınırları.

 

Kullanıma hazır modellerle, detayları manuel olarak çıkarmak veya kendi derin öğrenme modelinizi eğitmek için artık zaman ve enerji harcamanıza gerek kalmıyor. Bu modeller, çeşitli coğrafyalardan gelen çok büyük veri setleriyle eğitilmiştir. Siz kendi görüntülerinizle, bir düğmeye tıklayarak detayları kolayca çıkarabilir ve haritalama, görselleştirme ve analiz için CBS veri kümesi katmanlarınızı oluşturabilirsiniz.

Dubai’deki Palmiye Adalarından çıkarılmış örnek bina taban sınırları.

 

Kullanımınıza Hazır Yayınlanmış Birkaç Modeli Tanıyalım

ArcGIS Online’da sürekli olarak yenilerinin eklendiği derin öğrenme modelli mevcuttur. Bu modeller, ArcGIS Pro, Image Server veya ArcGIS for Python ile kullanabileceğiniz Derin Öğrenme Paketleri yani DLPK dosyaları şeklinde bulunmaktadır.

  1. Bina Taban İzini Çıkarma modeli, yüksek çözünürlüklü uydu görüntülerinden bina taban izlerini çıkarmak için kullanılır. Amerika Birleşik Devletleri verileriyle tasarlanmış ve eğitilmiş olsa da, dünyanın diğer bölgelerinde oldukça iyi performans gösteriyor.

    Bu model Dünya’nın farklı bölgelerindeki veri kümeleriyle de çalışmaktadır. İsveç’ten örnek sonuçlar.

     

    Bina taban izi katmanları, şehir bölge planlama, sigortacılık, vergilendirme, değişim tespiti ve altyapı planlaması gibi CBS işlerinde kullanılabilen verilerdir. Bazı sonuçlara ulaşabileceğiniz bir hikaye haritasına buradan erişebilir ve ArcGIS Pro’da nasıl uygulanabileceğine ilişkin bir videoya da buradan erişebilirsiniz.

  2. Arazi Örtüsü Sınıflandırma modeli, Landsat 8 görüntüleri kullanılarak bir arazi örtüsü ürünü oluşturmak için kullanılır. Ortaya çıkan arazi örtüsü haritaları, kentsel planlama, kaynak yönetimi, değişim tespiti ve tarım için kullanılabilir.

    Landsat 8 görüntülerinden sınıflandırılmış arazi örtüsü haritası.

     

    Bu jenerik model, Landsat 8 verileri ile Amerikan Ulusal Arazi Örtüsü Veritabanı (NLCD) 2016 üzerinde eğitilmiştir. Arazi örtüsü sınıflandırması karmaşık bir uygulamadır ve geleneksel yöntemlerle tespit edilmesi zordur. Derin öğrenme modelleri, bu karmaşık semantikleri öğrenme ve çok iyi sonuçlar verme konusunda yüksek kapasiteye sahiptir.

  3. Ağaç Nokta Sınıflandırma modeli, nokta bulutu veri kümelerinde ağaçları temsil eden noktaları sınıflandırmak için kullanılabilir.

    Ağaç nokta sınıflandırmalarıyla yapılmış 3 Boyutlu bir sahne.

     

    Ağaçlara ait noktalarının sınıflandırılması, yüksek kaliteli 3B altlık haritaları, kentsel planlama ve ormancılık iş akışları oluşturmak için faydalı olabilir. Bu derin öğrenme modeli 3B Altlık Harita Çözümü‘nde lidar verilerinden ağaçları sınıflandırmak ve ayıklamak için geliştirilmiştir.

Sonraki Adım

ArcGIS’te derin öğrenme modellerini kullanmak için buradaki ayrıntılı talimatları okuyarak, ArcGIS Living Atlas’taki derin öğrenme modellerini kendiniz deneyin.

Kaynaklar:

Living Atlas of the World | ArcGIS
Introducing ready-to-use geospatial deep learning models (esri.com)
Building Footprint Extraction (arcgis.com)
How-to: Extracting Building Footprints using Esri’s Deep Learning Model – YouTube

Esri Türkiye, Aralık 2020

Önceki Yazı
Webhooks – Biz size dönüş yaparız
Yazıyı görüntüle
Sonraki Yazı
 COVID-19 Aşı Dağıtımını Planlayın ve Yönetin
Yazıyı görüntüle